Synthesis of L-*â***-3**′**-Deoxy-3**′**,3**′**-difluoro-4**′**-thionucleosides**

Feng Zheng, Xiao-Hua Zhang, Xiao-Long Qiu, Xingang Zhang, and Feng-Ling Qing*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

flq@mail.sioc.ac.cn

Received October 19, 2006

2006 Vol. 8, No. 26 ⁶⁰⁸³-**⁶⁰⁸⁶**

ABSTRACT

An efficient route to L-*â***-3**′**-deoxy-3**′**,3**′**-difluoro-4**′**-thionucleosides, thio-containing analogues of highly bioactive gemcitabine, is described. Our synthesis highlighted the installation of the thioacetyl group in high efficiency and construction of 3-deoxy-3,3-difluorothiofuranose skeleton in a novel method.**

gem-Difluoromethylene (CF₂) has been suggested by Blackburn as an isopolar and isosteric substituent for oxygen.¹ Since then, the CF_2 group was extensively used to modify nucleoside analogues. For example, 2′-deoxy-2′,2′-difluorocytidine (gemcitabine **1**, Figure 1) has been approved as a drug for solid tumor treatment.2 Unnatural L-configuration nucleosides have drawn considerable attention due to their lower host toxicity while maintaining good activity in comparison with their corresponding D -nucleosides.³ 4'-Thionucleosides, in which the furanose ring oxygen is replaced by a sulfur atom, have been studied extensively over the past 10 years because of their potent biological activity.4 Recently, a number of D-(L-)difluoromethylene-containing thionucleosides have been prepared, such as D-2′-deoxy-2′,2′ difluoro-4′-thiocytidine **2**, ⁵ L-2′-deoxy-2′,2′-difluoro-4′-thio-

(2) (a) Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. *J. Org. Chem.* **1988**, *53*, 2406. (b) Hertel, L. W.; Boder, G. B.; Kroin, J. S.; Rinzel, S. M.; Poore, G. A.; Todd, G. C.; Grindey, G. B. *Cancer Res.* **1990**, *50*, 4417.

- (3) For a minireview, see: Mathe, C.; Gosselin, G. *Antiviral Res.* 2006, *71*, 276.
- (4) For review; see: Yokoyama, M. *Synthesis* **2000**, 1637.

10.1021/ol062576k CCC: \$33.50 © 2006 American Chemical Society **Published on Web 11/30/2006**

cytidine **3**, ⁶ and D-2′,3′-dideoxy-3′,3′-difluoro-4′-thiocytidine **4**. ⁷ Based on the above considerations and our efforts to prepare the fluorinated sugar nucleosides,8 we designed our target molecules L-3′-deoxy-3′,3′-difluoro-4′-thionucleosides

Figure 1. Rationale for the design of the target molecule **5**.

⁽¹⁾ Blackburn, C. M.; England, D. A.; Kolkmann, F. *J. Chem. Soc., Chem. Commun*. **1981**, 930.

5 (Figure 1). The *gem*-difluoromethylene (CF_2) group was at the C3′ position of compounds **5**. Moreover, nucleosides **⁵** would combine the characteristics of compounds **¹**-**⁴** based on the bioisosteric rationale (Figure 1).

Our previous attempt to prepare L-3′-deoxy-3′,3′-difluoro-4′-thiocytosine **5** via Pummerer reaction of compound **6** failed (Scheme 1).9 The oxidation of **6** followed by the

condensation with silyated *N*⁴ -benzoylcytosine (Pummerer recation) did not give our desired protected nucleoside **7**, but the regioisomer **8**. The regiochemistry of the Pummerer recation was determined by the kinetic acidity of the α -proton of 4′-thiofuranose **6**.

The new synthetic route was based on the supposition that the target molecules **5** could be derived from the precursor **9** by introduction a base moiety using the glycosylation reactions (Scheme 1). Intermediate **9** would be reached through ring closure of the our developed versatile *gem*difluorinated synthon **10**, which was easily prepared according to our reported methodology.8a,9

The construction of the special skeleton **9** appeared to be a great challenge. Recently, Chu group reported the synthesis of thiosugar through the corresponding riboside, 7 which stimulated us to prepare the intermediate **9** using the same strategy. Thus, 3-deoxy-3,3-difluoro-D-arabinofuranose **12**, prepared from optically pure *gem*-difluorinated synthon **11** via our reported procedure,9 was converted to compound **13** by treatment with TsOH/MeOH (Scheme 2). However, the

ring opening of **13** with BnSH afforded the 1-thiofuranoside **14** as the main product, and our desired thioacetal **15** was provided only in very low yield. More unfortunately, the corresponding triflate **16**, obtained via *O*-triflation of **15**, decomposed very quickly at room temperature.

Then, another strategy to thiosugar, pioneered by Montgomery et al.,¹⁰ was attempted. Their method highlighted the fact that reductive deprotection of SAc to SH with DIBAL-H and simultaneous reduction of the methyl ester to $-CHO$ in the same molecule would give rise to thioactol formation via spontaneous cyclization. Thus, developing a practical route to thioacetate **19** starting from compound **11** was what should be first addressed (Table 1).

Table 1. Preparation of the Thioacetate **19**

^a Determined by 19F NMR spectra. *^b* Yield was based on chromatography isolation over silica gel.

Otera and co-workers reported an efficient method of CsF/ DMF-mediated nucleophilic inversion of secondary mesylates and tosylates.¹¹ Their strategy could be successfully ultilized with a variety of oxygen-, sulfur-, nitrogen- and carbo-nucleophiles. Thus, we think that thioacetate **19** could

⁽⁵⁾ Yohimura, Y.; Kitano, K.; Yamada, K.; Satoh, H.; Watanabe, M.; Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. *J. Org. Chem.* **1997**, *62*, 3140. (6) Jeong, L. S.; Moon, H. R.; Choi, Y. J.; Chun, M. W.; Kim, H. O. *J.*

Org. Chem. **1998**, *63*, 4821.

⁽⁷⁾ Zhu, W.; Chong, Y.; Choo, H.; Mathews, J.; Schinazi, R. F.; Chu, C. K. *J. Med. Chem.* **2004**, *47*, 1631.

^{(8) (}a) Xu, X. H.; Qiu, X.-L.; Zhang, X.; Qing, F.-L. *J. Org. Chem.* **2006**, *71*, 2820. (b) Meng, W. D.; Qing, F.-L. *Curr. Top. Med. Chem.* **2006**, *6*, 1499.

⁽⁹⁾ Zhang, X.; Xia, H.; Dong, X.; Jin, J.; Meng, W. D.; Qing, F.-L. *J. Org. Chem.* **2003**, *68*, 9026.

⁽¹⁰⁾ Secrist, J. A., III; Riggs, R. M.; Tiwari, K. N.; Montgomery, J. A. *J. Med. Chem.* **1992**, *35*, 533.

⁽¹¹⁾ Otera, J.; Nakazawa, K.; Sekoguchi, K.; Orita, A. *Tetrahedron* **1997**, *53*, 13633.

be provided by treatment of the corresponding mesylate **17**, obtained via exposure of compound **11** to MsCl/pyridine, with AcSH under a CsF/DMF system. However, no reaction occurred when compound **17** was treated with AcSH (3 equiv)/CsF (3 equiv) in DMF at room temperature (Table 1, entry 1). When the reaction was performed at 50 $^{\circ}$ C, ¹⁹F NMR of reaction mixture showed that the defluorination occurred (Table 1, entry 2). In our opinion, failure of above reactions was attributed to the facts that (1) a strong electronwithdrawing *gem*-difluoromethylenyl group (CF₂) could effectively stabilize the neighboring $C-O$ bond, which made the mesyl group hard to remove, and (2) a strong electronwithdrawing CF_2 would enhance the acidity of 2-H in compound **17**, and thus, when reaction temperature was increased, the dehydrofluorination reaction and other side reactions occurred in the presence of Lewis base $F⁻$. Taking the above analyses together, we envisioned that the trifloromethanesulfonyl as the leaving group should probably afford our desired compound. Thus, triflate **18** was first prepared in good yield via *O*-triflation of **11**. To our delight, although treatment of compound **18** under the normal conditions (KSAc/DMF) still resulted in dehydrofluorination (Table 1, entry 3), substitution of AcSH (3 equiv)/CsF (3 equiv) for KSAc smoothly furnished our desired thioacetate **19** in 72% yield (Table 1, entry 4), which could be further improved to 86% when 5.4 equiv of AcSH/CsF was used (Table 1, entry 5).

With the thioacetate **19** in hand, we then focused on the construction of the thiofuranose **9**. Fortunately, we were delighted to find that the thiofuranose **20** could be provided in 64% overall yield (Scheme 3) when the resultant aldehyde,

in situ obtained via hydrolysis of the thioacetate **19** with TFA and oxidation of the resulting diols with NaIO₄, was treated with acidic methanol (1 M HCl) at room temperature for 12 h. The isomers of compound **20** could not be separated on silica gel chromatography.

During the synthesis of *N*¹ -(3-deoxy-3,3-difluoro-D-arabinofuranosyl)cytosine, 9 we accidently found that the C3 (-OBn) configuration in compound **¹⁰** was stereospecifically transformed into a single arabino configuration in **12** (Scheme 4). As shown in Scheme 4, the hydrogen-bondmediated four-membered ring may play an important role in the favorite transition state of the cyclization to form compound **12**. We were interested in investigating whether this stereospecifical transformation also occurred in the cyclization of the thioacetate. Thus, compound **21** (a mixture of C3 epimers) was first prepared starting from compound **10** using the aforementioned starategy. Then, compound **21** was subjected to the same conditions as described above for

preparing the thiofuranose **20** from **19**. What surprised us was that only compound **20** was isolated, which showed that the stereospecific transformation of the C3 $(-OBn)$ configuration in compound **21** also happened. It was noteworthy that the $C3$ ($-OBn$) configuration of compound 20 was contrary to that of compound **12**.

The proposed mechanism of this stereospecific transformation is outlined in Scheme 5. The aldehyde intermediates

I and **II** could be formed from compound **21** and were in tautomeric equilibrium through the intemediate **III**. The stereospecific formation of compound **20** from intermediate **I** with the *S* configuration at the C2 position was thought to be faster than the formation of compound **20**′ because a huge gauche between the BnO group and the $BZOCH₂$ group in intermediate **II** existed. In addition, the attack of the free hydroxyl group of **I** on the carbonyl group from both the *re* and *si* faces of the aldehyde moiety resulted in a 1/1 mixture of α/β anomers of 20.

The acetylation of 20 with acetic anhydride in CH_2Cl_2 afforded the β anomer 22 as the main product ($\alpha/\beta = 1/6$)

(Scheme 6), which resulted from the assistance of neighboring large group participation (Scheme 6).¹² In view of the fact that the glycosylation of furanose possessing an acyloxy group in C-2′ position would involve the oxonium intermediate, which might induce the attack of the silylated base from the contrary face of C-2' acyloxy group¹³ to give the β anomer nucleosides as main product and for the conveniency of the following removal of the protecting groups, we decided to replace the benzyloxy group in compound **22** with a benzoyloxy group. Thus, treatment of the acetate **22** with $NaBrO₃/Na₂S₂O₄¹⁴ smoothly provided the alcohol 23 in 87%$ yield, which was then benzoylated with $Bz_2O/DMAP/Et_3N$ to produce the key intermediate **24** in 92% yield. Then, coupling of compound **24** with various persilylated pyrimidines were performed in refluxed acetonitrile under Vorbruıggen conditions.¹⁵ As expected, all the reactions gave the β anomers as the main products. Trace of the α anomers was detected by 19 F NMR spectra of the crude reaction mixture, but was not isolated by flash chromatography.

(12) Zhang, X.-G.; Qing, F.-L.; Yu, Y.-H. *J. Org. Chem.* **2000**, *65*, 7075. (13) Bio, M. M.; Xu, F.; Waters, M.; Williams, J. M.; Savary, K. A.; Cowden, C. J.; Yang, C.-H.; Buck, E.; Song, Z. J.; Tschaen, D. M.; Volante,

R. P.; Reamer, R. A.; Grabowski, E. J. J. *J. Org. Chem.* **2004**, *69*, 6257. (14) Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A. *Tetrahedron Lett.* **1999**, *40*, 8439.

(15) Vorbru¨ggen, H.; Krolikiewicz, K.; Bennua, B. *Chem. Ber.* **1981**, *114*, 1234.

Finally, removal of the benzoyl groups in compounds **²⁵**- **27** with saturated methanolic ammonia smoothly produced the desired free nucleosides **²⁸**-**30**.

The stereochemistry of compound **26** has been established by 2D NMR NOESY experiments. As shown in Figure 2,

Figure 2. NOE correlation of compound **26** and X-ray structure of compound **28**.

correlation between H_1' and H_4' was clearly observed in this compounds. In addition, the H_2' proton strongly correlated with H6 protons of base. All of these showed that the nucleoside derivative 26 is β anomer. Furthermore, the structure of compound **28** was confirmed by X-ray crystal analysis (Figure 2).

In conclusion, we have designed and synthesized the new L-3′-dideoxy-3′,3′-difluoro-4′-thionucleosides **²⁸**-**³⁰** based on our versatile *gem*-difluorinated synthon. Our synthesis highlighted the installation of thioacetyl group in high efficiency and construction of thiofuranose skeleton in a novel method. Antiviral and cytotoxicity evaluations of herein synthesized L-3'-deoxy-3',3'-difluoro-4'-thionucleosides are currently in progress and will be reported elsewhere.

Acknowledgment. The National Natural Science Foundation of China and Shanghai Municipal Scientific Committee are greatly acknowledged for funding this work.

Supporting Information Available: Detailed experimental procedures and analytical data for all new compounds and crystallographic data for compound **28**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL062576K